Муниципальное бюджетное общеобразовательное учреждение «Большетроицкая средняя общеобразовательная школа Шебекинского района Белгородской области»

PACCMOTPEHO

на заседании методического объединения естественно-математического цикла Протокол №1 от «30» августа 2023 г.

СОГЛАСОВАНО

заместитель директора «30» августа 2023 г.

(подпись)

Н.Н.Бабенко

УТВЕРЖДАЮ

Приказ №237 от «30» августа 2023 г.

Директор школы Л.Ю. Карницка

Рабочая программа элективного курса «Ядерная физика» для 10-11 классов

Составитель: учитель физики Павлов Г.А.

Большетроицкое, 2023

Пояснительная записка

Рабочая программа составлена на основе:

- Федерального государственного образовательного стандарта среднего(полного) общего образования;
- Авторской программы Ю. А. Панебратцев «Сборник примерных рабочих программ. Элективные курсы для профильной школы» М. Просвещение, 2018г-186стр.;
- Рабочей программы воспитания муниципального бюджетного общеобразовательного учреждения «Большетроицкая средняя общеобразовательная школа Шебекинского района Белгородской области»;
- Учебным планом основной образовательной программы основного общего образования Муниципального бюджетного общеобразовательного учреждения «Большетроицкая средняя общеобразовательная школа Шебекинского района Белгородской области».

Цель курса:

расширение, углубление и обобщение знаний о физиче- ских процессах в области ядерной физики, причинах и механизмах их протекания, развитие познавательных интересов и творческих способностей учащихся через практическую направленность обучения физике и интегрирующую роль физики в системе естественных наук.

Задачи изучения предмета:

Задачи курса:

- развитие естественнонаучного мировоззрения учащихся;
- развитие приёмов умственной деятельности, познавательных интересов, склонностей и способностей учащихся;
- развитие мотивации учения, формирование потребности в получении новых знаний и применении их на практике;
- расширение, углубление и обобщение знаний по физике, химии, биологии;
- использование межпредметных связей физики с математикой, биологией, химией, историей, экологией, рассмотрение значения этого курса для успешного освоения смежных дисциплин;
- совершенствование экспериментальных умений и навыков в соответствии с требованиями правил техники безопасности;

- рассмотрение связи ядерной физики с жизнью, с важнейшими сферами деятельности человека;
- развитие у учащихся умения самостоятельно работать с дополнительной литературой и другими средствами информации;
- формирование у учащихся умений анализировать, сопоставлять, применять теоретические знания на практике;
- формирование умений по решению экспериментальных и теоретических задач.

Планируемые результаты освоения курса

Личностные результаты:

- ориентация обучающихся на реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обучающихся к отстаиванию собственного мнения, выработке собственной позиции по отношению к общественно политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, в том числе в сфере науки и техники;
- готовность и способность обучающихся саморазвитию самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества;
- принятие и реализация ценностей здорового и безопасного образа жизни.
- способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России.
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих права и интересы, том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности.
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в

поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;

- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей;
- компетенции сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, понимание значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов, формирование умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности.
- осознанный выбор будущей профессии;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности.
- физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

Выпускник научится:

- раскрывать на примерах роль ядерной физики в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между физикой и другими естественными науками;
- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологии, в практической деятельности людей;
- характеризовать взаимосвязь между физикой и другими естественными науками;
- понимать и объяснять целостность физической теории, различать границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчётные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении фи- зических задач, находить адекватную предложенной в задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Учащийся получит возможность научиться:

- описывать и анализировать полученную в результате проведённых физических экспериментов информацию, определять её достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя(вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы, для обработки результатов эксперимента.

•

Метапредметные результаты: Регулятивные универсальные учебные действия

Выпускник научится: — самостоятельно определять цели ставить и формулиров

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы (в том числе время и другие нематериальные ресурсы), необходимые для достижения поставленной ранее цели, сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

– определять несколько путей достижения поставленной цели и выбирать оптимальный путь достижения цели с учётом эффективности расходования ресурсов и основываясь на соображениях этики и морали;

Познавательные универсальные учебные действия Выпускник научится:

- с разных позиций критически оценивать и интерпретировать информацию, распознавать и фиксировать противоречия в различных информационных источниках, использовать различные модельносхематические средства для их представления;
- осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи, искать и находить обобщённые способы их решения;
- приводить критические аргументы в отношении суждений, анализировать и преобразовывать проблемно противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- менять и удерживать разные позиции в познавательной деятельности (ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные универсальные учебные действия Выпускник научится:

- выстраивать деловые взаимоотношения при работе, как в группе сверстников, так и со взрослыми;
- при выполнении групповой работы исполнять разные роли (руководителя и члена проектной команды, генератора идей, критика, исполнителя и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием различных устных и письменных языковых средств;
- координировать и выполнять работу в условиях реального и виртуального взаимодействия, согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- публично представлять результаты индивидуальной и групповой деятельности;
- подбирать партнёров для работы над проектом, исходя из соображений результативности взаимодействия, а не личных симпатий.

Содержание курса

Введение (2ч)

Излучение абсолютно чёрного тела и квантовая гипотеза Планка, открытие Дж. Дж. Томсоном электрона. Открытие рентгеновского излучения. Открытие А. А. Беккерелем радиоактивности. Опыты Пьера и Марии Кюри. Создание А. Эйнштейном специальной теории относительности. Взаимосвязь между массой и энергией. Главная формула XX в.: $E_0 = mc^2$.

Эксперимент Э. Резерфорда по открытию «планетарной» модели атомного ядра. Квантование энергии и модель Н. Бора.

Последствия этих открытий для создания квантовой механики и ядерной физики как основы технического прогресса человечества в XX и XXI вв., создания картины микро- и макрокосмоса на основе Стандартной модели.

Тема 1. Квантовый мир атомов и молекул (3 ч)

Модель атома Бора и линейчатые спектры. Квантование энергии. Волны материи Л. де Бройля. Корпускулярноволновой дуализм. Дифракция электронов на кристаллах. Фотоэффект и эффект Комптона. Принцип неопределённости Гейзенберга. Уравнение Шредингера. Волновая функция и её вероятностная интерпретация. Квантовый эффект туннелирования.

Квантование углового момента. Спин электрона. Принцип запрета Паули. Электронные оболочки атомов и Периодический закон Менделеева.

Молекулы. Спектры атомов и молекул.

Тема 2. Масса и энергия в релятивистской теории (4 ч)

Основные постулаты специальной теории относительности. Преобразования Галилея Лоренца. Инвариантность интервала.

Масса в классической механике и теории относительности. Преобразования Лоренца для импульса и энергии. Масса — релятивистский инвариант. Связь энергии и массы покоя $E_0 = mc^2$. Примеры перехода массы в энергию и энергии в массу. Дефект массы и энергия связи ядер. Массы и энергия составных систем. Релятивистская кинематика и законы сохранения энергии и импульса.

Тема 3. Атомные ядра и радиоактивность (4 ч)

Основные свойства атомных ядер: состав, размер, форма, заряд, масса ядра, энергия связи. Изотопы. Границы стабильности атомных ядер. Спин протона и нейтрона. Угловой момент ядра.

Ядерные силы. Классическая протон-нейтронная модель ядра. Ядерные модели: ферми-газ, капельная, оболочечная и обобщённая модель ядра.

Короткодействующие нуклонные корреляции в ядрах и кумулятивный ядерный эффект.

Радиоактивность. Виды радиоактивности: a-, b-, g-распад, спонтанное деление.

Границы стабильности атомных ядер. Закон радиоактивного распада.

Период полураспада. Активность радиоактивного источника. Качественные и расчётные задачи. Математический практикум «Статистический характер радиоактивного распада».

Тема 4. Ядерные реакции (2 ч)

Ядерные превращения в экспериментах Резерфорда. Открытие протона и нейтрона. Реакции деления ядер. Цепная ядерная реакция. Термоядерные реакции. Подпороговые реакции. Рождение антипротонов. Изучение структуры протонов и ядер в пучках электронов.

Качественные и расчётные задачи.

Тема 5. Происхождение элементов во Вселенной (4 ч)

Фундаментальные взаимодействия. Стандартная модель. Большой взрыв. Атомы водорода и легчайших элементов. Синтез элементов в звёздах. Взрывы сверхновых звёзд и нейтронные звёзды.

Тема 6. Синтез новых сверхтяжёлых элементов (2 ч)

Трансурановые и трансфермиевые элементы. «Остров стабильности» и синтез новых сверхтяжёлых элементов. Лаборатория ядерных реакций имени академика Г. Н. Флёрова. Модель циклотрона и детектора для регистрации сверхтяжёлых элементов. Как регистрируют сверхтяжёлые элементы.

Тема 7. Ускорители и коллайдеры (4 ч)

Принципы работы линейных и циклических ускорителей. Движение заряженных частиц в электрическом и магнитном поле. В. И. Векслер: принцип автофазировки. А. М. Будкер: идея электронного охлаждения и первые встречные кольца. Большой адронный коллайдер (LHC) в Европе и коллайдер релятивистских ядер (RHIC). Модель ускорительного комплекса НИКА - российского коллайдера тяжёлых ионов.

Тема 8. Исследование столкновений релятивистских ядер (3 ч)

Что происходит при столкновениях релятивистских ядер. Детекторы для регистрации продуктов ядерных реакций. Основные характеристики реакций. Триггер для отбора событий. Время-проекционная камера. Электромагнитный калориметр, силиконовые детекторы для определения вершины взаимодействия.

Тема 9. Ядерная энергетика и глобальные проблемы человечества (3 ч)

Ядерная энергетика и глобальные проблемы человечества. Ядерные реакторы. Природные ядерные реакторы.

Решение качественных и расчётных задач.

Интерактивная модель ядерного реактора.

Тема 10. Ядерная физика и медицина (3 ч)

Ядерная физика и медицина. Модель ускорительного комплекса для протонной радиотерапии.

Тема 11. Ядерная физика с нейтронами (3 ч)

Ядерные исследования с нейтронами. Свойства нейтронных пучков. Модель исследовательского импульсного реактора на быстрых нейтронах ИБР-2. Применение нейтронного активационного анализа в экологии. Ядерная планетология. Поиск воды на Марсе при помощи источника нейтронов.

Тема 12. Радиобиология (3 ч)

Что изучает радиобиология. Состав космического излучения и его воздействие на живые организмы. Пилотируемые полёты в космос и радиационные риски. Астробиология.

Моделирование радиационных повреждений клеток в среде GEANT.

Тема 13. Взаимодействие излучения с веществом (3 ч)

Взаимодействие заряженных частиц, фотонов и электронов с веществом.

Тема 14. Детекторы заряженных частиц и гамма-квантов (3 ч)

Различные типы детекторов: газовый, фотоэмульсии, пузырьковая камера, сцинтилляционный, полупроводниковый, детектор на основе микроканальных пластин. Съём сигнала с детектора. Энергетические и время-пролётные спектры. Современные методы съёма и оцифровки информации.

Тема 15. Виртуальная лаборатория «Основы измерения сигналов с детекторов» (4 ч)

Тема 16. Виртуальная лаборатория «Сцинтилляционный телескоп для изучения космических лучей» (4 ч)

Тема 17. Виртуальная лаборатория гамма-спектроскопии (4 ч)

Тема 18. Виртуальная лаборатория спонтанного деления ядер (4 ч)

Тема 19. Математический практикум по обработке результатов измерений в среде ROOT (4 ч)

Тема 20. Математический практикум по моделированию радиационных повреждений клетки в среде GEANT (2 ч)

Тематическое планирование.

No	Тема	Количество часов		Реализация календарного плана	
		Общее	Практич	воспитательной работы рабочей	
			еские	программы воспитания	
		Proges	работы		
		введе	ние (2 ч)		
1	Введение. Великие открытия	2	_	Информационная минутка: важные	
	конца XIX — начала XX в.			даты и события	
	Тема 1. Кван	 товый мир	атомов и	молекул (3 ч)	
2	Основные принципы квантовой механики	1	-	Информационная минутка: важные	
	механики			даты и события	
3	Уравнение Шредингера.	1	-	Информационная минутка: важные	
	Понятие вол- новой			даты и события	
	функции.Квантовое				
4	тунеллирование Квантование углового	1	_	Информационная минутка: важные даты	
	момента. Спин электрона.			и события	
	Принцип Паули				
	Тема 2. Масса и	-	релятивис	тской теории (4 ч)	
5	Основные постулаты	2	-	Информационная минутка: важные даты	
	специальной теории			и события	
6	относительности Масса, энергия, импульс в	2	_	Информационная минутка: важные	
	релятивистской физике			даты и события	
	Тема 3. Атом	ные ядра	и радиоакт	гивность (4 ч)	
	10 0. 71.0	віс лідра	л радлоак.		
7	Основные свойства атомных	1	-	Информационная минутка: важные	
	ядер			даты и события	
8	G	1	_	Информационная минутка: важные	
U	Ядерные модели			даты и события	
				Mr. 2. 11 600211121	
	Радиоактивность. Виды	2	1	Информационная минутка: важные	
	радиоактивности			даты и события	
	Тема	 а 4. Ядернь	⊥ ые реакции	l 1 (2 y)	
9	Плорин о ресульт	1	_	Информационная минутка: важные	
5	Ядерные реакции			даты и события	
10	Примеры ядерных реакций	1	-	Информационная минутка: важные	
				даты и события	
	Тема 5. Происхо	⊥ эждение эл	⊥ ементов во	D Вселенной (4 ч)	
11		2		Информационная минутура волинур	
11	От большого взрыва до атома		_	Информационная минутка: важные	

водорода			даты и события
Синтез элементов в звёздах	2	-	Информационная минутка: важные даты и события
Тема 6. Синтез н	новых свер	хтяжёлы	іх элементов (2 ч)
Синтез новых сверхтяжёлых элементов	2	-	Информационная минутка: важные даты и события
Тема 7. У	скорители	и коллаї	 йдеры (4 ч)
Ускорители, принципы их работы	2	-	Информационная минутка: важные даты и события
Современные коллайдеры протонов и ядер	2	-	Информационная минутка: важные даты и события
Тема 8. Исследовани	е столкнов	ений рел	ятивистских ядер (3 ч)
Столкновения ядер при высоких энергиях и их регистрация	3	-	Информационная минутка: важные даты и события
Тема 9. Ядерная энергетин	ца и глобал	ьные про	облемы человечества (3 ч)
Ядерная энергетика и глобальные проблемы человечества	3	-	Информационная минутка: важные даты и события
Тема 10. Яд	 церная физ	вика и ме	⊥ едицина (3 ч)
Ядерная физика и медицина	3	-	Информационная минутка: важные даты и события
Тема 11. Яде	 ерная физі	ика с ней	ітронами (3 ч)
Ядерная физика с нейтронами	3	-	Информационная минутка: важные даты и события
Тема	12. Радио	биология	я (3 ч)
Радиобиология	3	1	Информационная минутка: важные даты и события
Тема 13. Взаимод	цействие из	злучения	с веществом (3 ч)
Взаимодействие заряженных частиц с веществом	3	-	Информационная минутка: важные даты и события
Тема 14. Детекторы :	заряженны	х частиц	и гамма-квантов (3 ч)
Детекторы заряженных частиц и гамма-квантов	3	-	Информационная минутка: важные даты и события
Тема 15. Виртуальная лаборатор	ия «Основі	ы измере	⊔ ения сигналов с детекторов» (4 ч)
Проведение виртуальной лабораторной работы «Основы	4	4	Информационная минутка: важные

	измерения сигналов с детекторов»			даты и события			
Тема	16. Виртуальная лаборатория «Сцинтилляционный телескоп для изучения космических лучей» (4 ч)						
	Проведение виртуальной лабораторной работы «Сцинтилляционный телескоп для изучения космических лучей» Тема 17. Виртуальная	4 лаборато	4 ория гамм	Информационная минутка: важные даты и события ма-спектроскопии (4 ч)			
	Проведение виртуальной лабораторной работы «Гамма-спектроскопия»	4	4	Информационная минутка: важные даты и события			
	Тема 18. Виртуальная ла	аборатори	я спонта	нного деления ядер (4 ч)			
	Проведение виртуальной лабораторной работы «Спонтанное деление ядер»	4	4	Информационная минутка: важные даты и события			
	Тема 19. Математический практикум п	ю обработ	ке резул	ьтатов измерений в среде ROOT (4 ч)			
	Проведение математического практикума по обработке результатов измерений в среде ROOT	4	4	Информационная минутка: важные даты и события			
Тема (2 ч)	20. Математический практикум по модел	лированин	о радиац	ионных повреждений клетки в среде GEANT			
	Проведение математического практикума по моделированию радиационных повреждений клетки в среде GEANT	2	2	Информационная минутка: важные даты и события			
	Итого:	68	24				